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XX. A Memoir on Curves of the Third Order. By A. CayLEy, Esq., F.R.S.
Received October 30,—Read December 11, 1856,

A CURVE of the third order, or cubic curve, is the locus represented by an equation such
as U=(%)2, 9, 2)’=0; and it appears by my “ Third Memoir on Quantics,” that it is
proper to consider, in connexion with the curve of the third order U=0, and its
Hessian HU=0 (which is also a curve of the third order), two curves of the third class,
viz. the curves represented by the equations PU=0 and QU=0. These equations, I
say, represent curves of the third class; in fact, PU and QU are contravariants of U,
and therefore, when the variables , y, z of U are considered as point coordinates, the
variables £, 7, { of PU and QU must be considered as line coordinates, and the curves will
be curves of the third class. I propose (in analogy with the form of the word Hessian)
to call the two curves in question the Pippian and Quippian respectively. A geome-
trical definition of the Pippian was readily found; the curve is in fact STEINER'S curve

R, mentioned in the memoir *“ Allgemeine Figenschaften der algebraischen Curven,”'

Crelle, t. xIvii. pp. 1-6, in the particular case of a basis-curve of the third order; and
I also found that the Pippian might be considered as occurring implicitly in my ¢ Mé-
moire sur les Courbes du Troisiéme Ordre,” Liouwille, t. ix. p. 285, and “ Nouvelles Re-
marques sur les Courbes du Troisiéme Ordre,” Liouwille, t. x. p. 102. As regards the
Quippian, T have not succeeded in obtaining a satisfactory geometrical definition; -but
the search after it led to a variety of theorems, relating chiefly to the first-mentioned
curve, and the results of the investigation are contained in the present memoir. Some
of these results are due to Mr. SaLMON, with whom I was in correspondence on the sub-
ject. The character of the results makes it difficult to develope them in a systematic
order; but the results are given in such connexion one with another as I have been able
to present them in. Considering the object of the memoir to be the establishment of a
distinct geometrical theory of the Pippian, the leading results will be found summed up
in the nine different definitions or modes of generation of the Pippian, given in the con-
cluding number. In the course of the memoir I give some further developments relating
to the theory in the memoirs in Liouville above referred to, showing its relation to the
Pippian, and the analogy with theorems of HESSE in relation to the Hessian.

Article No. 1.—Definitions, dc.

1. It may be convenient to premise as follows:—Considering, in connexion with a
curve of the third order or cubic, @ point, we have—
(a) The first or conic polar of the point.
~(b) The second or line polar of the point.
The meaning of these terms is well known, and they require no explanation.
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Next, considering, in connexion with the cubic, @ line—

(¢) The first or conic polars of each point of the line meet in four points, which
are the four poles of the line.

(d) The second or line polars of each point of the line envelope a conic, which
is the lineo-polar envelope of the line.

And reciprocally considering, in connexion with a curve of the third class, @ line, we
have—

(e) The first or conic pole of the line.
(f) The second or point pole of the line.

And considering, in connexion with the curve of the third class, ¢ point—

(g9) The first or conic poles of each line through the point touch four lines, which
are the four polars of the point. '

(#) The second or point poles of each line through the point generate a conic,
which is the point pole locus of the point.

But I shall not have occasion in the present memoir to speak of these reciprocal
figures, except indeed the first or conic pole of the line.

The term conjugate poles of a cubic is used to denote two points, such that the first or
conic polar of either of them, with respect to the cubic, is a pair of lines passing through
the other of them. Reciprocally, the term conjugate polars of a curve of the third class
denotes two lines, such that the first or conic pole of either of them, with respect to the
curve of the third class, is a pair of points lying in the other of them.

The expression, a syzygetic cubic, used in reference to two cubics, denotes a curve of
the third order passing through the points of intersection of the two cubics; but in the
present memoir the expression is in general used in reference to a single cubic, to denote
a curve of the third order passing through the points of intersection of the cubic and its
Hessian.  As regards curves of the third class, I use in the memoir the full expression,
a curve of the third class syzygetically connected with two given curves of the third
class.

It is a well-known theorem, that if at the points of intersection of a given line with a
given cubic tangents are drawn to the cubic, these tangents again meet the cubic in
three points which liein a line; such line is in the present memoir termed the satellite
line of the given line, and the point of intersection of the two lines is termed the satellite
point of the given line; the given line in reference to itssatellite line or point is termed
the primary line. ’

In particular, if the primary line be a tangent of the cubic, the satellite line coincides
with the primary line, and the satellite point is the point of simple intersection of the
primary line and the cubic.

Article No. 2.—Group of Theorems relating to the Conjugate Poles of a Cubic.

2. The theorems which I have first to mention relate to or originate out of the

theory of the conjugate poles of a cubic, and may be conveniently connected together
and explained by means of the accompanying figure.



MR. A. CAYLEY’'S MEMOIR ON CURVES OF THE THIRD ORDER. 417

The point E is a point of the Hessian; this being so, its first or conic polar, with
respect to the cubic, will be a pair of lines passing through a point F of the Hessian;
and not only so, but the first or conic polar of the point ¥, with respect to the cubic will
be a pair of lines passing through E. The
pair of lines through F are represented in the
figure by FBA, FDC, and the pair of lines
through E are represented by ECA, EDC, and
the lines of the one pair meet the lines of the
other pair in the points A, B, C, D. The point
O, which is the intersection of the lines AD,
BC, is a point of the Hessian, and joining EO,
FO, these lines are tangents to the Hessian at
the points E, F, that is, the points E, F are cor-
responding points of the Hessian, in the sense
that the tangents to the Hessian at these points
meet in a point of the Hessian. The two points E, F are, according to a preceding defi-
nition, conjugate poles of the cubic.

The line EF meets the Hessian in a third point G, and the points G, O are conjugate
poles of the cubic. The first or conic polar of G, with respect to the cubic, is the pair
of lines AOD, BOC meeting in O. The first or conic polar of O, with respect to the
cubic, is the pair of lines GEF and Gf'¢f¢’ meeting in G. The four poles of the line
EO, with respect to the cubic, are the points of intersection of the first or conic polars
of the two points E and O, that is, the four poles in question are the points F, F, ¢, €.
Similarly, the four poles of the line FO, with respect to the cubic, are the points E, E, f, f'.

The line EF, that is, any line joining two conjugate poles of the cubic, is a tangent to
the Pippian, and the point of contact I" is the harmonic with respect to the points E, F
(which are points on the Hessian) of G, the third point of intersection with the Hessian.
Conversely, any tangent of the Pippian meets the Hessian in three points, two of which
are conjugate poles of the cubic, and the point of contact is the harmonic, with respect
to these two points, of the third point of intersection with the Hessian. ‘

The line GO in the figure is of course also a tangent of the Pippian, and moreover
the lines FBA, FDC (that is, the pair of lines which are the first or conic polar of E) and
the lines ECA, EDB (that is, the pair of lines which are the first or conic polar of F) are
also tangents to the Pippian. The point E represents any point of the Hessian, and the
three tangents through E to the Pippian are the line EFG and the lines ECA, EDB;
the line EFG is the line joining E with the conjugate pole ¥, and the lines ECA, EDB
are the first or conic polar of this conjugate pole F with respect to the cubic. The
figure shows that the line EO (the tangent to the Hessian at the point E) and the before-
mentioned three lines (the tangents through E to the Pippian), are harmonically related,
viz. the line EO the tangent of the Hessian, and the line EF one of the tangents to the
Pippian, are harmonics with respect to the other two tangents to the Pippian. It is
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obvious that the tangents to the Pippian through the point F are in like manner the
line GFE, and the pair of lines FBA, FBC, and that these lines are harmonically
related to FO the tangent at ¥ of the Hessian. And similarly, the tangents to the
Pippian through the point O are the line GO and the lines AOD, BOC, and the tangents
to the Pippian through the point G are the line GO and the lines GFE and Gf'efe.
Thus all the lines of the figure are tangents to the Pippian except the lines EO, FO,
which are tangents to the Hessian. It may be added, that the lineo-polar envelope of
the line EF with respect to the cubic is the pair of lines OE, OF.

It will be presently seen that the analytical theory leads to the consideration of a line
1J (not represented in the figure): the line in question is the polar of E (or F) with
respect to the conic which is the first or conic polar of F (or E) with respect to any
syzygetic cubic. The line 1J is a tangent of the Pippian, and moreover the lines EF
and 1J are conjugate polars of a curve of the third class syzygetically connected with
the Pippian and Quippian, and which is moreover such that its Hessian is the Pippian.

Article Nos. 3 to 19.—Analytical investigations, comprising the proof of the Theorems,
Article No. 2.

3. The analytical theory possesses considerable interest. Take as the equation of the

U=a’+y*+2*+6layz=0.
Then the equation of the Hessian is '
HU=P(2*4+9*42°)— (1 +28)2y2=0;
and the equation of the Pippian in line coordinates (that is, the equation which expresses
that &r+47y+Lz=0 is a tangent of the curve) is
PU= — (841 +1)+(—1+4P)a7=0.
The eqﬁation of the Quippian in line coordinates is
QU=1-10°)(&47+T)—62(54 417 =0;
and the values of the two invariants of the cubic form are
S=—I141,
T=1—208—87,

cubic,

values which give identically, ‘
TP —648°=(14-8);

the last-mentioned function being in fact the discriminant.
4. Suppose now that (X, Y, Z) are the coordinates of the point ¥, and (X', Y, 7

the coordinates of the point F; then the equations which express that these points are
conjugate poles of the cubic, are

XX+ UYZ' +Y'Z) =0,
YY' +UZX! +ZX) =0,
27! +UXY +X'Y)=0;
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and by eliminating from these equations, first (X!, Y', Z'), and then (X, Y, Z), we find
+E(XE 4+ Y +7°) —(14-20)X Y Z =0,
+ (XY 477 — (14-28)X'Y'Z =0,

which shows that the points E, F are each of them points of the Hessian.

5. I may notice, in passing, that the preceding equations give rise to a somewhat sin-
gular unsymmetrical quadratic transformation of a cubic form. In fact, the second and
third equations give X': Y': Z'=YZ—0X?: PXY—17*: PZX—[Y*. And substituting
these values for X/, Y', Z' in the form

F (X4 Y 47— (142P)X'Y'Z,
the result must contain as a factor
+ XY+ 7)) —(14-28)XYZ;
the other factor is easily found to be
—P(P(X Y+ 2°)+- 81X Y Z).
Several of the formul® given in the sequel conduct in like manner to unsymmetrical
transformations of a cubic form. ,
6. I remark also, that the last-mentioned system of equations gives, symmetrically,
X2 Y2 7. Y7 77X : X'Y'
=YZ—PX2: ZX = PY?: XY —PPZ2: PYZ—1IX*: PZX —1Y?: PXY —177;
and it is, I think, worth showing how, by means of these relations, we pass from the
equation between X', Y', Z' to that between X, Y, Z. In fact, representing, for short-
ness, the foregoing relations by .
X2, Y"2:7%:. Y7 Z/X": X'Y=A:B:C:F:G: H,
we may write '
X'=AF=GH, Y'=BG=HF, Z’=CH=FG, ABC=FGH;
and thence ’
XB=AF.GI’, Y°’=BG.H°F?, Z*=CH.FG*, X'Y7Z'=FG'H?;
hence
+Z2(X'3+Y'3+Z'3)—(1+253)X’Y'Z' :
- =FGH{+P(AGH+BHF+CFG)—(14-2F°)FGH}.
But we have
+PF(AGH4BHF+CFG) = — (204 8)(X°+ Y+ Z8) XY Z A (I 4- 20 ) (Y 2P+ Z°X°+ X°Y?)
—(14-2P)FGH = (P428)X+ Y+ Z)XYZA- (I 420 )(Y* 2P+ P4 XPY?)
+P(1=)(1420)XY?Z;
and thence
+(AGH+BHF+CFG)—(1427)FGH
=—P(1=P){ X+ Y+ 72°)XYZ — (14 20) XY 7%} ;
and finally,
_I__Z2(XIS+Y13+ZI3)_(1+2l3)XIYIZI
=0(—=I4+1)(IYZ=X)(IZX-Y*)(IXY —Z*)XYZ
X {P(X°+ Y+ 7°)—(14-2P)XYZ}.
312
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‘We have also, identically,
ABC-—-FGH:%(—-l—|—l“)XYZ{lz(X“’+Y3—|—Z3)-—(1—|—2l3)XYZ},
which agrees with the relation ABC—FGH=0.

7. Before going further, it will be convenient to investigate certain relations which
exist between the quantities (X, Y, Z), (X!, Y, Z'), connected as before by the equations

XX+ YZ +Y'Z) =0,
YY' +1(ZX' +ZX) =0,
77 +U(XY'+X'Y)=0,

and the quantities

£=YZ —Y'Z, w=XX'=—3(YZ +Y'Z),
n=7X' —7'X, B=YY'=—3(ZX' +7X),
(=XY'—X'Y, y=77 = —3(XY'+X'Y).

‘We have identically,

2XXN(YZ =Y'2)+ (XY + XY )ZX' = Z'X) + (ZX'+ ZX)(XY' —X'Y)=0;
or expressing in terms of £ #, {, @, 3, ¥ the quantities which enter into this equation,
and forming the analogous equations, we have '

2008 —yn —BL =0 (A)
—ot+208—al =0

—BE—an +2y7=0.
‘We have also

XY =X Y7 =4 — (XY + XY ZX' = Z'X) 4 (ZX' + Z'X)(XY'—-X"Y)},
and thence in like manner,

2 2 1

XoY'Z! — XY Zi=5;(yn — 37) (B)
2 2 1

Y2 X = YPZX =5;(af — %)

XY — XY 7= (3 —an).
Again, we have
(YZ—=YZy=(YZ'+Y'7Zy—4AYY'Z7
(ZX' =Z'X)(XY' =XY)= — (ZX'+ ZX)(XY'+ X'Y)+2XX(YZ'+ Y'Z);

and thence

b4 1 2 '

g A% — 4By (C)
2 1 2

7 ='Z—QB — 4y
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2, 1
1= —F0'—5By

2 . 1
G=—78—pre

. 2 1
g” — 772 ZQ “ﬁ ;
and conversely,

LO48r)e =g —ar (D)
FOH8P)B = —4PYE
FH8) = —4r
_215(1+8z3)37=21?+ 4
—R(1+8E)ye=20r+

—2(1488)B=2104 &,
8. It is obvious that
Setny+L2=0
is the equation of the line EF joining the two conjugate poles, and it may be shown
that
ax+By+yz=0
is the equation of the line IJ, which is the polar of E with respect to a conic which is
the first or conic polar of F with respect to any syzygetic cubic. In fact, the equation of
a syzygetic cubic will be 2°4-y*42°4- 6azyz=0, where A is arbitrary, and the equation of
the line in question is
(X9,+Y0,470,)(X"0,+ YD, + 7, )(2° +y° +2°+ 6A2yz) =0 ;
or developing, ‘
XX'a+YY'y+ 222
+AM(YZ +Y' 2o+ (ZX 4+ ZX Yy + (XY + XY )2} =0;

and the function on the left-hand side is

A
(1=7) (arBy+92)
which proves the theorem. :
9. The equations (A) by the elimination of (£, , ), give

— U+ +7")+ (=14 4P)efy=0,
which shows that the line IJ is a tangent of the Pippian: the proof of the theorem is

given in this place because the relation just obtained between «, 3, ¥ is required for the
proof of some of the other theorems.
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10. To find the coordinates of the point G in which the line EF joining two conjugate
poles again meets the Hessian.
We may take for the coordinates of G,

uX 40X, wY40Y, uZ4oZ ;

and substituting in the equation of the Hessian the terms containing #? «* disappear,
and the ratio w: v is determined by a simple equation. It thus appears that we may

write

u=—3P(XX"+ YY" +Z7")+ (14 20)YZX+Z XY +X'Y'Z)
v= 3P(XX'+YY'+7°2)—(14+20)YZX'+ZXY' +XYZ);
hence introducing, as before, the quantities , 7, ¢, «, 8, ¢, we find
uX +vX'=30(yn—B0)+(14+20)(X*Y'Z' - X"YZ);
but from the first of the equations (B),
X*Y'Z — XY Z=g; (y1—B2),

and therefore the preceding value of X +vX' becomes

(3l2—1 J;f F)(w—&%

which is equal to
—1+4+48
—5r— (y1—p0).
Hence throwing out the constant factor, we find, for the coordinates of the point G, the
values
‘ yi—fL, al—yE, PE—an
11. To find the coordinates of the point O.
Consider O as the point of intersection of the tangents to the Hessian at the points -
E, F, then the coordinates of O are proportional to the terms of

3PX? —14-2PYZ, 3PY*—1+42PZX, 3PZ*—142PXY
SPXP—1420Y'Z, BPY"—142PZX!', 38PZ*—1+42FX'Y.

Hence the a-coordinate is proportional to
(8UY>—142PZX)(3PZ — 1 2PX'Y) —( 317 —142PXY)3PY" — 1 2PZX!),
which is equal to ‘
WY ZE=Y"2?)+3P(14-28)YY' (XY = XY )+ 8P(1 +2P) ZZ! (ZX' — 7/X)
—(14+20yXX(YZ' =Y'Z);

or introducing, as béfore, the quantities &, , ¢, &, 3, , to
— OPak+ BP(L4207) B+ yr)— (L-+ 20 'ak
=(—=1=13P— 41"t +2(14+28)(BL+ 7).
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But by the first of the equations (A) B{+y7=2IxE, and the preceding value thus
becomes (—1—TP+480°)xE. Hence throwing out the constant factor the coordinates of
the point O are found to be

a‘f, ﬁﬂa 7&'
12. The points G, O are conjugate poles of the cubic.
Take a, b, ¢ for the coordinates of G, and @, b, ¢ for the coordinates of O, we have
a, b, c=yn—P, al—yE, PE—on,
al7 b’a (IJ—_-“‘L: ’ ﬁ’] , 9.
These values give aa'4-1(bc'+0'c)
=a(yn—B0)+1{ Ba(BE— on) + yi(al—yE)}
=&y +18")+7'(— 1)+ (loy)+E(—eBf—1y");
or substituting for &, #*, £, £{ their values in terms of «, 3, v, this is

(=77 =) ()
+ (5t (— o)
+(F—a) 1)
+ (=787 ) (—aB=1),

which is identically equal to zero. Hence, completing the system, we find
ad +1(bc +b'¢)=0,
bt 4{(ca'4-ca)=0,
cc +l(ab+d'b)=0,

equations which show that O (as well as G) is'a point of the Hessian, and that the
points &, O are corresponding poles of the cubic.

18. The line EF joining a pair of conjugate poles of the cubic is a tangent of the
Pippian *.

In fact, the equations (A), by the elimination of «, 3, v, give

— (& +7+0)+(—1+4L)Er=0,
which proves the theorem.
14. To find the equation of the pair of lines through F, and to show that these lines
are tangents of the Pippian.
The equation of the pair of lines considered as the first or conic polar of the conjlxgate

pole E, is
X(2*+2ly2)+ Y (2 +2lzx) 4 Z(2* + 21wy ) =0.

* STEINER’S curve Ry, in the particular case of a cubic basis-curve, is according to definition the envelope
of the line EF, that is, the curve R, in the particular case in question is the Pippian.
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Let one of the lines be

A+ py+rz=0,
then the other is

X Y Z
o+ oyt e=0;
and we find
20X —Y P —Zp* =0

—XV2+2ZYV7\.—Z7\.2 =0
— X =Y\ + 207w =0,
any two of which determine the ratios a, w, ».
The elimination of X, Y, Z gives
2w, —»*, —w | =0,
—, 2bn, —A?
—wt, =2 20w

!
which is equivalent to

a{ =N+ +7)+(—1+ 4P} =0

or omitting a factor, to
— (P +) (=148 =0,
which shows that the line in question is a tangent of the Pippian.
15. To find the equation of the pair of lines through O.
The equation of the pair of lines through E is in like manner
X'(@®42ly2)+ Y (P +202a)+ 2/ (24 2lxy) =0 ;
and combining this with the foregoing equation,
X(@4-2ly2) + Y (- 2lea) +Z(22+ 2lay) =0
of the pair of lines through F, viz. multiplying the two equations by
XX - YO + 727, _(XXla +YY"4- ZZ’Q),
and adding, then if as before
a:b:o=yn—pL: ef—yE: BE—oan,
we find as the equation of a conic passing through the points A, B, C, D, the equation
a2+ 2lyz) 4-0(y*+21x) + c(2 + 21y ) =0.
But putting, as before, )
a:b:d=ak: Pyl
then o/, &', ¢’ are the coordinates of the point O, and the equations
ad' +1(bd +b'c) =0,
by +1(ca' +ca)=0,
od 4 1(ab'+a'5)=0

show that the conic in question is in fact the pair of lines through the point O.
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16. To find the coordinates of the point I', which is the harmonic of G with respect
to the points E, F.

The coordinates of the point in question are
uX—oX!, wY—oY', uZ—oZ,
where %, v have the values given in No. 10, viz.
u=—3P(XX"+ YY" 4 77")4 (14 28)(YZX+Z' XY +XY'Z),
v=SPXX'4+YY +722Z)—(1420)(YZX' +ZXY' +XYZ');
these values give
uX —=vX'= =32 {2X* X"+ (XY 4+ X'Y)YY' +(XZ'+X'Z)Z7'}

‘ F+ (128 (XY' +XY)XZ' +XZ)+ XX (YZ' +Y'Z} ;
and therefore

uX — X' = -352{2a2_§37}+(1+2za){l—’23«y-§a2}
= p(l+8P) (=l +By);

and consequently, omitting the constant factor, the coordinates of I" may be taken to be
— By, —I+ye, —ly'+ep.

17. The line through two consecutive positions of the point I is the line EF.
The coordinates of the point I" are

— U +By, =Bty —ly+oB;
and it has been shown that the quantities «, (3, y satisfy the eQuation
— (&’ 4B+ 7))+ (—1448)eBy=0.

Hence, considering «, 3, y as variable parameters connected by this equation, the equa-
tion of the line through two consecutive positions of the point I is

— 3l (—1448)By, — 3B+ (—14+48)ye, —3lP+(—1+4F)B |=0;

z, — 2l , y , B
Y, ¥ R —2IB , o
2, B , « ) —2ly
and representing this equation by
LZ'+ My + Nz= Oa
we find '

L=(4038y —o?)(—8la*+(—1441)By)
+ (2B 20" — 313"+ (— 1+4)yer)
+ ey +218)(— 3l + (=1 +4F)e)
or multiplying out and collecting,

Li=3la'+(— 1= 8By + (— BI-+81) o o)+ (=162 +160)8;

MDCCCLVIL 3K
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but the equation
— 4B +9")+(—14+4F)aBy=0

8let= — 3Uef’+ ')+ (—3+120)e’ By,

gives

and we have
L=(—4+440)e’By+(—81+480*) (a4 ay®) +(—162416F)3%*
=(—444P)(By +2U(ef*+ oy’ +41B)
= (— Ao A0 g+ 208°) B +207°)
or, in virtue of the equations (D),
L=(—44-4P0)PCE . Pen=(—4+4P)I'e'nl=(— 4+ 4P)'EnL £,

Hence, omitting the common factor, we find L: M:N=¢:%:{ and the equation
La+My+4Nz=0 becomes
f»""l"ﬂy +ZZ=07

which is the equation of the line EF, that is, the line through two consecutive positions
of T'is the line EF; or what is the same thing, the line EF touches the Pippian in the
point I" which is the harmonic of G with respect to the points E, F.

18. The lineo-polar envelope of the line EF, with respect to the cubic, i is the pair of
lines OE, OF.

The equation of the pair of lines OE, OF, considered as the tangents to the Hessian
at the points E, F, is

(80X =142PYZ)x +(3PY* —1+2PZX)y + (8172 —1+42P°XY)z} ]_
X {(8PX =14 2PY'Z e+ (80X =14 2PZ X )y + (3121 — 1+28‘°‘X’Y’)z}J
And on the left-hand side the coefficient of #* is
‘ XX —3P(14-20)(X2Y'Z + XY Z)+ (1 +20)*YY'ZZ!,
which is equal to

00— SB(1-+28) BBy +7 ) +(1+28)By,
that is,

H(=141) (Bl 2(14+2P)3y};
and the coeflicient of yz is /
9l4(Y2Z’2+Y’2Z2)_3l2(1+~2Z3)(YYI(XY’+X’Y)—I—ZZ'(XZ'+X’Z)}+(1+2Z3)2XX’(YZ’+Y’Z),
which is equal to
9l4<113a2—2ﬁ7>—3Z2(1+213) (=767) +(1+2Pye( — ),
that is,
=1 (1= 482 — 6By}
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Hence completing the system and throwing out the constant factor, the equation of the
pair of lines is
(812 +2(14+28)By, 3I8*4+-2(1+2E)ye, 8l +2(1+28)ep,
(1—42)*—60By, (1—48)3—6Lyw, (1—48)y*—62a8Yx, ¥, 2)*=0.

But the equation of the line EF is £24-sy-+¢2=0, and the equation of its lineo-polar
envelope is

£, n, ¢ |=0;

& 2, Iz, Uy
2, lz, y, lo
g Uy, Iy, oz |

or expanding,
(yz—Pa?, za—o, ay—02, Pyz—1a®, Pan—Uy*, Pay—12°YE, 7, {)*=0;
or arranging in powers of #, ¥, 2, |
(—re—20t, —Pr—21LE, —U0—21En, 38+ Unt, 37+ PLE, %Z’-{jl“’gn][w, ¥, 2)*=0.

And if in this equation we replace %, &c. by their values in terms of «, 3, ¥, as given by
the equations (D), we obtain the equation given as that of the pair of lines OE, OF.
19. It remains to prove the theorem with respect to the connexion of the lines
EF, 1J. ‘
The equations (A) show that the two lines
Ex +77,y +ZZ=O,
a4y +1z=0,
(where &, 7, { and «, 3, y have the values before attributed to them) are conjugate polars
with respect to the curve of the third class,

(47" +1%)—3En=0,

in which equation , », { denote current line coordinates. The curve in question is of
the form APU4BQU=0. We have, in fact, identically,

ST.PU—4S.QU=1480) {{(8+»*+*)—3ExL}.

It is clear that the curve in question must have the curve PU=0 for its Hessian; and
in fact, in the formula of my Third Memoir,

H(6PU+BQU)=(—2T, 48 $?, 18 TS, T°+16 S «, 8)*PU
+(8 , T ,-88 =TS Y« B)QU.
(8Se+TB)(e*—SB%);
and therefore, putting e=3T, B=—4S, we find

H(3T.PU—4S.QU) = —1(T*— 64S")°PU.
3K2

The coefficient of QU is
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Article No. 20.—Theorem relating to the curve of the third class, mentioned in the
preceding article.

20. The consideration of the curve 3T.PU—4S8.QU=0, gives rise to another
geometrical theorem. Suppose that the line (&, #, £), that is, the line whose equation is
Ex+ny-+4{z=0, is with respect to this curve of the third class one of the four polars of a
point (X, Y, Z) of the Hessian, and that it is required to find the envelope of the line

Ev+4-my+42=0.
‘We have
XY 2=l =l I —CE 12—,

and X, Y, Z are to be eliminated from these equations, and the equation

PXH+Y 4+ 7°)—(14-28)XYZ=0
of the Hessian. We have

X+ Y+ 7= P(E+A+C)
=308+ +)en;
+90g 7
—(A42P) 08 +E)
XYZ= UE+r+L)ent
+(—1+0)ere
— 74+ Er),
HU= F(E+7+L)
— (4 BB+ 7+t
+ (14108 =205¢72;
and equating the right-hand side to zero, we have the equation in line coordinates of the

curve in question, which is therefore a curve of the sixth class in quadratic syzygy with
the Pippian and Quippian.

and thence

Article No. 21.—Geometrical definition of the Quippian.

21. Thave not succeeded in obtaining any good geometrical definition of the Qmpplan
and the following is only given for want of something better.

The curve

T.PU{P6H(«U+6BHU)} —P6HU{T(«U+68HU). P(«U+6BHU)} =0,

which is derived in what may be taken to be a known manner from the cubic, is in
general a curve of the sixth class. But if the syzygetic cubic «U4-68HU=0 be pro-
perly selected, viz. if this curve be such that its Hessian breaks up into three lines, then
both the Pippian of the cubic «U-68HU=0, and the Pippian of its Hessian will break
up into the same three points, which will be a portion of the curve of the sixth class,

and discarding these three points the curve will sink down to one on the third class, and
will in fact be the Quippian of the cubic.
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To show this we may take
U4 6BHU=a*+7°+2°=0

as the equation of the syzygetic cubic satisfying the prescribed condition, for this value
in fact gives ‘
H(«U+68HVU)=—ayz=0,

a system of three lines. We find, moreover,
P(eU+ 68HU)=P(2*+y*+2°)= —Enl

P{6H(«U4-6BHU)} =P(—bzyz)= —4EnC,
the latter equation being obtained by first neglecting all but the highest power of / in

the expression of PU, and then writing /=—1: we have also T(«U468HU)=1.
Substituting the above values, the curve of the sixth class is

El{—4T.PU4+P(6HU)}=0;
or throwing out the factor &7, we have the curve of the third class,
—4T.PU4P(6HU)=0.
Now the general expression in my Third Memoii*, viz.
P(eU+68HU)=(’+ 1253+ 4T3 )PU
+(«’8—458")QU,
P(6HU)=4T.PU—4S.QU,

and

putting =0, B=1, gives

or what is the same thing,

—4T.PU4-P(6HU)=—4S.QU;
and the curve of the third class is therefore the Quippian QU=0. It may be remarked,
that for a cubic U=0 the Hessian of which breaks up into three lines, the above
investigation shows that we have PU=—&{, P(6HU)=—4&4, and T=1, and conse-
quently that —4T.PU-4P(6HU) ought to vanish identically; this in fact happens in
virtue of the factor S on the right-hand side, the invariant S of a cubic of the form in

question being equal to zero; the appearance of the factor S on the right-hand side is
thus accounted for & priori. '

Article No 22.—Theorem relating to a line which meets three given conics in six points in
tmvolution.
22. The envelope of a line which meets three given conics, the first or conic polars of
any three points with respect to the cubic, in six points in involution, is the Pippian.
It is readily seen that if the theorem is true with respect to the three conics,

dU dUu dUu
7‘”":0, —d?/-=0’ 'B‘;ZO,

it is true with respect to any three conics whatever of the form

dau dUu  dU
S +(sz—y‘+y—‘-l;=0,
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that is, with respect to any three conics, each of them the first or conic polar of some
point (A, w, v) with respect to the cubic. Considering then these three conics, take as
the equation of the line £x+7y+4£2=0, and let (X, Y, Z) be the coordinates of a point
of intersection with the first conic, we have

EX+9Y+LZ=0,

X2420YZ=0;
and combining with these a linear equation
eX+BY+yZ=0,

in which («, 8, ¥) are arbitrary quantities, we have
X:Y: Z=yp—pBL: al—yE: PE—an;

(71— BL)*+ 20— yE)(BE—am)=0),
an equation in (e, 3, ¥) which is in fact the equation in line coordinates of the two points
of intersection with the first conic. Developing and forming the analogous equations,
we find

and hence

(—QW, Z29 ’725 —‘4Z—l52, l’fﬂ’ ZEZ I“’ B’ 7)2=0
( & — 21z, &, lgn,  =lE=Ir, g Ye, B, y)=0
( ﬂ2, §2, '_‘2ZE77, ZZE; Z77Z7 —Eﬂ_l?I“? 67 7)2—_‘07

which are respectively the equations in line coordinates of the three pairs of intersections.

Now combining these equations with the equation y=0, we have the equations of
the pairs of lines joining the points of intersection with the point (#=0, y=0), and if
the six points are in involution, the six lines must also be in involution, or the condition
for the involution of the six points is

_ZZWZ’ Z27 ZEZa :0,
Z2’ - ZZZ”) Z”Z,
77‘27 £27 "‘Eﬂ— ZZ2

that 1s,
4P — En—=10)+ PP+ 183
2087+ 2080+ — E—17)=0 ;
“or reducing and throwing out the factor ¢3, we find

—UE+1"+0)+ (=1 +4P)En =0,

which shows that the line in question is a tangent of the Pippian.

It is to be remarked that any three conics whatever may be considered as the first or
conic polars of three properly selected points with respect to a properly selected cubic
curve. The theorem applies therefore to any three conics whatever, but in this case the
cubic curve is not given, and the Pippian therefore stands merely for a curve of the third
class, and the theorem is as follows, viz. the envelope of a line which meets any three
conics in six points in involution, is a curve of the third class.
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Article No. 23.—Completion of the theory in Liowville, and comparison with analogous
theorems of HEsSE.

In order to convert the foregoing theorem into its reciprocal, we must replace the
cubic U=0 by a curve of the third class, that is we must consider the coordinates which
enter into the equation as line coordinates; and it of course follows that the coordinates
which enter into the equation PU=0 must be considered as point coordinates, that is
we must consider the Pippian as a curve of the third order: we have thus the theorem ;
The locus of a point such that the tangents drawn from it to three given conics (the first
or conic poles of any three lines with respect to a curve of the third class) form a pencil
in involution, is the Pippian considered as a curve of the third order. This in fact
completes the fundamental theorem in my memoirs in Liouwille above referred to, and
establishes the analogy with Husse’s results in relation to the Hessian; to show this
I set out the two series of theorems as follows :—

HgssE, in his memoirs ¢ On Curves of the Third Order and Curves of the Third Class,”
Crelle, tt. xxviil. xxxvi. and xxxviii., has shown as follows :—

(z) The locus of a point such that its polars, with respect to the three conics X =0,
Y=0, Z=0 (or more generally its polars with respect to all the conics of the series
AX +uwY~+vZ=0) meet in a point, is a curve of the third order V=0.

(B) Conversely, given a curve of the third order V=0, there exists a series of conics
such that the polars with respect to all the conics of any point whatever of the curve
V=0, meet in a point.

(v) The equation of any one of the conics in question is

du__
AN + a’y +y dz =
that is, the conic is the first or conic polar of a point (7\, w, v) with respect to a certain curve
of the third order U=0; and this curve is determined by the condition that its Hessian
is the given curve V=0, that is, we have V=HU.

(%) The equation V=HU is solved by assuming U=aV+5HV, for we have then
H(aV+0HV)=AV+BHYV, where A, B are given cubic functions of @, 4, and thence
V=HU=AV4BHYV, or A=1, B=0; the latter equation gives what is alone import-
ant, the ratio ¢:0, and it thus appears that there are three distinct series of conics,
each of them having the above-mentioned relation to the given curve of the third order
V=0.

In the memoirs in Léouville above referred to, I have in effect shown that—

(') The locus of a point such that the tangents from it to three conics, represented
in line coordinates by the equations X=0, Y=0, Z=0 (or more generally with respect
to any three conics of the series AX +wY ++Z=0) form a pencil in involution, is a curve
of the third order V=0. \

(B') Conversely, given a curve of the third order V=0, there exists a series of conics
such that the tangents from any point whatever of the curve to any three of the conics,
form a pencil in involution.
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Now, considering the coordinates which enter into the equation of the Pippian as point
coordinates, and consequently the Pippian as a curve of the third order, I am able to
add as follows :—

(') The equation in line coordinates of any one of the conics in question is

dU  dU  dU
7\75 +w %—+v7§,~=0,

that is, the conic is the first or conic polar of a line (A, w, v) with respect to a certain curve
of the third class U=0; and this curve is determined by the condition that its Pippian
is the given curve of the third order V=0, that is, we have V=PU.

(¥) The equation V=PU is solved by assuming U=aPV+54QV, for we have then
P(aPV+0QV)=AV4BIV, where A and B are given cubic functions of @, ; and
thence V=PU=AV+4BHV, or A=1, B=0; the latter equation gives what is alone
important, the ratio @:d; and it thus appears that there are three distinct curves of the
third class U=0, and therefore (what indeed is shown in the Memoirs in Liouwville)
three distinct series of conics having the above-mentioned relation to the given curve of
the third order V=0. '

It is hardly necessary to remark that the preceding theorems, although precisely
analogous to those of HEssE, are entirely distinct theorems, that is the two series are not
connected together by any relation of reciprocity.

Article Nos. 24 to 28.—Various investigations and theorems.

24. Reverting to the theorem (No. 18), that the lineo-polar envelope of the line EF is
the pair of lines OF, OF ; the line EF is any tangent of the Pippian, hence the theorem
includes the following one :—

The lineo-polar envelope with respect to the cubic, of any tangent of the Pippian, is
a pair of lines. ‘ '

And conversely, \

The Pippian is the envelope of a line such that the lineo-polar envelope of the line
with respect to the cubic is a pair of lines.

It is I think worth while to give an independent proof. It has been shown that the
equation of the lineo-polar envelope with respect to the cubic, of the line x4y +22=0
(where &, »,  are arbitrary quantities), is

(—=08—=2UL, —Un®—=20¢, —UL—21En, 3£4+0rl, 3P+, YCP+PEnYa, y, 2)=0;
and representing this equation by
@ b, ¢ f, g, kY@, g, 20 =0,
bo—f*=¥§(—E+-80n* - 81 +-120x0),
ca—gP=n(8PE—rP+8P  +120¢xL),
ab—R={(8U+ 80— +120%n),

we find
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gh—af =E(28(E 1+ )+ 4U(1+2P)ent) +(1+8P)r 0,

hf—bg =n(20(8 7 + 1+ 41(14-20)ent) +(14-8P) 28,

Fy—ch =t(2B(E 47+ 0)+ 41+ 2P)6) +(1-+8P)E.
and after all reductions,

abe—af*—bg*—ch*+2fgh
=[—=UE+7+)+(—14+4P)en=(PU),
or the condition in order that the conic may break up into a pair of lines is PU=0.
25. The following formule are given in connexion with the foregoing investigation,

but I have not particularly considered their geometrical signification. The lineo-polar
envelope of an arbitrary line £x+47y-+Z2=0, with respect to the cubic,

&+ 42 +4-6lryz=0,

(d, b) 07]09 g, h}[ﬂf, Y, Z)2=O;

and if in like manner we represent the lineo-polar envelope of the same line, with respect
to a syzygetic cubic,

has been represented by

2’41 +2°+6l2yz=0,
(a’a 5'9 0,3 fla g’, h’Ix, Y, Z)2= 0,

by

then we have
@ bo ") +¥(camg )k o@D =)+ 31 (gh—af)+24 (4f—Dg)+-20(fy—ch)
=(I 2P o4 L)
+(2U+41—32P0 481 )&+ +)Ent
+ (241144814 1*=T201 4244 3)E7°C7,

which may be verified by writing =/, in which case the right-hand side becomes as it

should do, 3(PU). Ifl= —liﬁlff' , that s, if the syzygetic cubic be the Hessian, then the

formula becomes e st s
d(bo—f)+&e.=grg| LTAFTOOE 74T
F120(— 14260+ 560) (1" +-L)EnL
+120(24-570°41681°+4161°) &

which is equal to
1 f~——~2 5772
365 QU'—248.PU }
26. The equation
(bd+b’0~2ff’, B .3.;’—|—g’k—af——a:f, . -I‘f, 7y Z)2=O

is the equation in line coordinates of a conic, the envelope of the line which cuts harmo-

nically the conics
(@ b, ¢, f, g, h X, 9, 2)*=0,

(a'v 6'7 d)f,9 !]'3 ﬁ'][-%,% Z)2=0 5
MDCCCLVIL. 3L
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and’if a, b, &c., &, &c. have the values before given to them, then the coefficients of the
equation are

b0 Ho— I =E({—E+ MI(I4U)(r +) + (1610 —20 — 20,

cd+cda—2¢gq' =n{—r + 4L (14 1)(C +8)+ (161 — 20 —21*)Ent,

abll +a'b—2h0 =L{ = +4U(I+1)(E+7°) + (1610 — 282 —20%)EnL,

GH g h—af —df=E{(P+ 1) 7"+ 0) (20420 4 8P1)ent} + (1+ 41 (14-1) e,

W' 4 Hf—bg =g =0 {(P+1)(E 2+ )+ (214204 81°1°)ént} -|—(1-|—4ll"(l+l’))Z2f2,

F7+HF =l — b =C (P (E 1) - (204204 8B+ (L-H 414 0)
and we thence obtain

(o' b c—2ff",.. gl +gh—of'—a'f,. . YE, », {)?

= — (1)

+ (P H160)(E 47+ 0)Ent

+ (60467 4-2420°) 4

+ (44160 (14 1))(Cr +E L +1E)

=0
as the condition which expresses that a line Ex+ny—+7z=0 cuts harmonically its lineo-
polar envelopes with respect to the cubic and with respect to a syzygetic cubic. -

27. To find the locus of a point such that its second or line polar with respect to the
cubic may be a tangent of the Pippian. Let the coordinates of the point be (z, y, z);
then if go+ny+22=0 be the equation of the polar, we have

Ein:l=a"42yz: y’+ 20 : 221y,
and the line in question being a tangent to the Pippian,
— UE 1 ) (— 1+ 42t =0,
But the preceding values give
E+r+0=(+y’+2°P+60 (2°+y°+2°)aye +3602% - (—24-80) (2 + 2%+ %)
ol = W@y 2y (4SNP 2 (PP trrry);
and we have therefore
(49 +2° P+ (100 =168 ) (2 +9° + 2°)ayz 4 (1 + 408 — 3205)2%y2* =0 ;
or introducing U, HU in place of 2°43°+2°, ayz, the equation becomes
—S. U4 (HU)*=0,

which is the equation of the locus in question.

28. The locus of a point such that its second or line polar with respect to the cubic is

a tangent of the Quippian, is found in like manner by substituting the last-mentioned
values of £, », { in the equation

QU =(1—102)(E+7"4-2°)— 62(5 4 4)Ent.
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We find as the equation of the locus,

(1=108)(2*+9*+2°)’ 4+ 6{(1— 308 =160°)(2* +9° +2°)zyz
+60%(1—1040— 321%)ay*2*
—2(1+ 8PP+ +ay) =0,
where the function on the left-hand side is the octicovariant ®,U of my Third Memoir,

the covariant having been in fact defined so as to satisfy the condition in question.
And I have given in the memoir the following expression for ®,U, viz.

0,U=(1-16—60%)U?
+(61 JU.HU
(60 JHUY
—2(14-80)(y*2° +2°a* +a°y°).

Article Nos. 29 to 81.—Formule for the intersection of a cubic curve and a line.

29. If the line {x+ny+Z{2=0 meet the cubic

2 +y°7° 4 6lxyz=0
in the points

(T2 Y15 21)s (B> Yo» %)s (%3 Yoo 2s)s
then we have

&Ly Y Y5 222 =0 = =5 B =1’
It will be convenient to represent the equation of the cubic by the abbreviated notation
(1, 1, 1, iYx, g, 2)>=0; we have the two equations
1,1, 1, Y, y, 2)°=0,
Extny+z =0;

and if to these we join a linear equation with arbitrary coefficients,

ex+PBy+yz=0,
then the second and third equations give
’ x:y2=Ppl—yn: yE—el: an—PFE; |
and substituting these values in the first equation, we obtain the resultant of the system.
But this resultant will also be obtained by substituting, in the third equation, a system

of simultaneous roots of the first and second equations, and equating to zero the product
of the functions so obtained*. We must have therefore

(1, 1, 1, B BL—yn, yi—ol, an—PBE)=(uz,+By+v2)( e+ BYs+y2.)(ats+Bys+7v2z) ;
and equating the coeflicients of o', 3% ¢*, we obtain the above-mentioned relations.
30. If a tangent to the cubic
4y +2°+6layz=0
* This is in fact the general process of elimination given in ScHLAFLI'S Memoir, “ Ueber die Resultante
einer Systemes mehrerer algebraischer Gleichungen,” Vienna Trans. 1852.

312
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at a point (#,, 9, 2,) of the cubic meet the cubic in the point (,, y,, 2,), then
&y1 s 2 =0,(4}—2}) 1 (A —23) s 2y (2 —113).
For if the equation of the tangent is &r-#y-+422=0, then
X5 YYfs: 22 =0"— 0 1 P —E 1 B —p,
Ern:l{=al+2ly.2, : yi+ 20z, : 214210y,
r* == —2) (1} 42+ 6lzy,2,— 803)

=(y}—2}) X —(1+48F)a3,
since (&, 9,, 2,) is a point of the cubic, and forming in like manner the values of £#—¢°

and

These values give

and £—»%, we obtain the theorem.
31. The preceding values of (2, ¥, 2,) ought to satisfy

(214202, )5+ (51 202,20, Jys+ (2421w, )2, =0
$§+y§+23+61$3?/323=0,
in fact the first equation is satisfied identically, and for the second equation we obtain
T3+95+ =21y — 20 +yi(d —al P2l — 1)
= —a{(yi— ) —yi(i— 7)) — 231 —1)
= (@+5n+a) (i —a)(d—ai)(ai—y3)
T3ls23= -Wl?/lzl(yi' 3)(zl—xl)(xl "’yl
and consequently
which verifies the theorem. It is proper to add (the remark was made to me by Pro-
fessor SYLVESTER) that the foregoing values
Ty: Yyt 2,=0y(y1—20) 1 (2 —a}) s 2y(a} =)
satisfy ¢dentically the relation
z+yita A +yi+ed

Zgls%3 Z1Y1%1

Article Nos. 32 to 34.—Formulew for the Satellite line and Point.
32. The line &r+7y+z=0 meets the cubié
24y 22+ 6lryz=0
in three points, and the tangents to the cubic at these points meet the cubic in three
points lying in a line, which has been called the Satellite line of the given line.

To find the equation of the satellite line; suppose that (#,, 41, 2,), (@2 Yas 22)s (T, Ys» %)
are the coordinates of the point in which the given line meets the cubic; then we have,
as before,

1,1, 1, ZIﬁZ“‘W?a y§—oal, “77—65)32(“371+B?/1+'}’zx)(“'z'z‘l‘p?/z"""}’zz)(ms‘l"ﬁys"‘?’za)-
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The equation of the three tangents is
I=[(a1+ Zlylzl)x+(y?+2lz1x1)y+(Z?+2l~’vx%)z’]] =0
X [(a3+20ysz.)o+ (93 + 202, )y + (25 +2m,y,)2]

X [(#24+20ys2)x 4 (924-2les, )y + (24 21m,y,)2] |
and if we put

=E+7+L)P =240 +7° + Vel +(— 24— 48187 - (— 44 32F)(#°C + L8+ E7)
(F is the reciprocant FU of my Third Memoir), then we have identically
F.U—=(tx+ny+)(Ex+1y+2), ;
and the equation of the satellite line is £x+7y+{2=0. In fact the geometrical theory
shows that we must have

F.U—NII=(&+ny+ o) (Extry+L2),
and it is then clear that N is a mere number. To determine its value in the most simple
manner, write {=0, y=0, 2={, z=—&, we have then F.U—NII=0, where

F=84"+ =270 =208 =287, U={-8.
The value of ITis II=F.U, and we thus obtain N=1. For substituting the above values,
= (21— 2 )38 —230)(a3, — 238)
= Qwas
—LY(@iria+ &)
+ 1822223+ &e.)
— &2,
and we have
: X =n =

T %%+ &e.= 30%
2,252, + &C': ""3&2

2)29%4 == Es— ﬂgs
and thence

Ttz + &e. =9 E4-608 (s — )= 30"+ 68
T2+ &e. = 9% —64(§ — ") =30E 608",
N=#—-¢y
— 8. 36(0 )
+ 8. 3048 +7)
—&E—7r")
=(L—8) 8+ 40 —207 =208 —28%).
Now considering the equation /
F. U—I=(&+ny+ L) oty +2),
in order to find £, #, ¢' it will be sufficient to find the coefficients of 2%, #°, z* in the

and consequently
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function on the left-hand side of the equation. The coefficient of 2* in IT is
(234 20y 2, (w34 22,2, ) (254 212y,)
= i}
- 42 23a3ys2.+ &c.)
+ 40 (w252, + &e.)
+ 80y, 9.ys2.2:25 5
and it is easy to see that representing the funcﬁon

(1, 1, 1, I B —yn, yE—al, an—PE)
(a'a b7 C, f, g9 h, i, j’ k’ lI“a 67 7)33

the symmetrical functions can be expressed in terms of the quantities a, b, &c., and that
the preceding value of the coefficient of #* in II is

by

a2
+2{(%hj—6al)
+ 4*(6gk — 3fj— 3hi+4-31?)
+80%bc;
and substituting for a, &c. their values, this becomes
=y
+21 { =&+ 200 ) E+2Un")}
AP~ 6(22+ 20 Y Er-+ 20E0)
+3(nl> - 218 )% +-2ULr)
+3(5H 2N+ 200E)
+8(E )T —E),
and reducing, we obtain for the coefficient of 2* in II the following expressio: ,~—
(*=Ty
— 18
— 247847+ )enl
=24+ CE+ET)
+80(E—r)E—E)
Now the coefficient of 2° in F. U is simply F, which is equal to
B =290 208 28
— 24187
—24P(8+n" 4L )enl
=207+ +E7")
— 48U
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and subtracting, the coefficient of 2° in F. U—II is
£ —28 =28
— 67
— 8L +E)
—8P(E—7)T—F)
— 4818,
(14-8P)&* (&' — 284 — 280 — 6 15°C%).
The expression last written down is therefore the value of £, or dividing by £ we have

¢, and then the values of #, ' are of course known, and we obtain the identical equation
F.U-TI=

which is equal to

(14 80)(8 — 28— 260 — 61 T)a
(Br4my422) +(1+8F)(r* — 200 — 208 — 6178y
(18— 208 — 200 — 61772

and the second factor equated to zero is the equation of the satellite line of

Ex+ny+{2=0.

33. The point of intersection of the line Zx+sy-+C2=0 with the satellite line
gx+7y+{2=0 is the satellite point of the former line; and the coordinates of the
satellite point are at once found to be

w1y 2=(r"—) (1428
(=8 (LE+20r)
(B =7 )(En+-20C7).
34. If the primary line &r+#y-+Z2=0 is a tangent to the cubic, then (z,, ¥,, #,) being
the coordinates of the point of contact, we have
g1 l=a14 22, i 20,2, 232Uy,
these values give as before
| P—C=—(148F)ai(pi—2);
208 =(1+81)y32,
and consequently we obtain
21y z=a, (i —2) 1y, (23 —a3): (@i —17),
that is, the satellite point of a tangent of the cubic is the point in which this tangent
again meets the cubic.

and they give also

Article Nos. 85 and 36.—Theorems relating to the satellite point.

35. If the line &r+7y+¢2=0 be a tangent of the Pippian, then the locus of the
satellite point is the Hessian.
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Take (2, 9, z) as the coordinates of the satellite point, then we have
&2y 2=(r—)(nl+2E)
((C—E)E+-20r)
((B—7) e 200) 5
where the parameters €, #, { are connected by the equation
—UE+7"+20)H(—14+-40)Ent=0.
Y+o=(C—E(E+20r)
- HE A2,
and it 1s easy to see that the function on the right-hand side must divide by #*—¢*:

hence #°+y°+7° will also divide by *—¢’, and consequently by (7°—)(£—£)(E —nr').
We have

We have

P +2)+("=0)=  E[=0=0r—0 =2
+38(C+n’ ")
—=38(C+*)
e ]
+ 617 — 7 =+ BE (1) — BE}
+ 1208, { —n°C(n* +- ) - 3870 — £}
+88 { =43 — (7 1)E}
2+ (1P =) =" =20+ L) 4 61872+ 121E4nZ - 81°5°).
Adding these values and completing the reduction, we find
Py +2'+ (P =LY =8N —7) = — E— 1 =270+ 208 28
+ 181
+120(8 7+ )ent
F 3B+ LE+E7) ;5

and

and we have also

wyz+ (=L C—E)E—7")

ere

24+ L)t

+4AP(7 L+ E)

+ 85,

{A(@+y'+2°)+Bayz} = (F = O)C—E)(E—7)

=  —A@E+r+ry

+ (1282A - AIB)E 47+ L)ent
+(18IA+(1+8)B)y?
+ (4P 4-88) A+ 4UB) (0 +LE +E7).

and thence
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The coefficient of 7°*48°+&%* on the right-hand side will vanish if (142°)A+7B=0,
or, what is the same thing, if A=0’, B=—(1+420); and substituting these values, we
obtain

(B(0*+9°42°) — (L4 2P)Enl} + (= &) (L —B) (B —7)
=—PE4+7+0)
+(— 44V E 7+ )t
+(—1482—=1601)8%2,

or, what is the same thing,
Pty +2°)— (1420 ryz= — (7" =) —&)(E —7')
X A{=UE+7+0)+(—1+48)ent)>.
Hence the left-hand side vanishes in virtue of the relation between &, 7, ¢, or we have

@4y +2°)— (14 20)wyz=0,

which proves the theorem.

36. Suppose that (X, Y, Z) are the coordinates of a point of the Hessian, and let
(P, Q, R) be the coordinates of the point in which the tangent to the Hessian at the
point (X, Y, Z) again meets the Hessian, or, what is the same thing, the satellite point
in regard to the Hessian of the tangent at (X, Y, Z). And consider the conic

X(2*+2lyz)+ Y (v + 2lex) + Z(a>+ 2lxy),

which is the first or conic polar of the point (X, Y, Z) in respect of the cubic. The
polar (in respect to this conic) of the point (P, Q, R) will be

«?a?-l-ﬂ?/'!-zz— B

£=PX+(RY-+QZ),
1=QY +{(PZ+RX),
=RZ+I(QX+PY);
or putting for (P, Q, R) their values,
E= (Y 2)(XE— 1Y),
7= (B —X*)(Y*—1ZX)
(=(X*=Y?*)(2*—IXY).
And if from these equations and the equation of the Hessian we eliminate (X, Y, Z),
we shall obtain the equation in line coordinates of the curve which is the envelope of
the line Zx47y+¢2=0. We find, in fact,
B = (V= 2 2= X)X YY)
( PXHY+7
—3(X+Y*+7Z*)XYZ
+9P2X2Y*Z2?
U+ (1—42) (Y2 + 22X 4-X°Y?),
MDCCCLVIL. 3 M

where
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Ent =(Y=7°)(2—-X*)(X*—=Y?)
( PX24+-Y*+7Z3)XYZ
+(1-=-0)XY?Z?
(Y4 7PX34+X5Y?) 5
and thence recollecting that
HU=P(X*4Y*+7°)—(14-2P)XYZ,

—E+7+0)+H(—1+40)l=— (Y’ =2 2= XY X* = Y°)(HUY,
and the equation of the envelope is
—UE+7+C) (=144t =0,
which is therefore the Pippian. 'We have thus the theorem,—
The envelope of the polar of the satellite point ién respect to the Hessian of the

tangent at any point of the Hessian, such polar being in respect of the conic which is
the first or conic polar of the point of the Hessian in respect of the cubic, is the Pippian.

we find

Article Nos. 37 to 40.—Investigations and theorems relating to the first or conic polar of «
point of the cubic.

37. The investigations next following depend on the identical equations
{a(X24-201YZ)+B(Y*+21ZX)+ (724 2IXY)}
X { = XYZ(2* 457+ 2)-+(X*+ Y4 Z)aye)
={X(*+2ly2)+ Y (y*+ 2lz2)+ Z(2>+ 2lzy)}
X (X (Y= Z2) oy —B2)+ Y (20— X0z — y0) + Z(X*— Y*) Br—a)}
+ {#(X°4-20YZ)+-y(Y2+21ZX) +2(77+4-2IXY)}
X {—(@YZA-BIX Ay XY\ Xa*+ Yy + Z)+(aX*+ B+ y ) Xzt Yew- Zay)},
which is easily verified.
I represent the equation in question by
KYT=WL4P0O;
then considering (z, y, z) as current coordinates, and (X, Y, Z) and (2, B, y) as the
coordinates of two given points % and (2, we shall have U=0 the equation of the cubic,
W =0 the equation of the first or conic polar of 3 with respect to the cubic, P=0 the
equation of the second or line polar of 3 with respect to the cubic. The equation T=0

is that of a syzygetic cubic passing through the point 3: the coordinates of the satellite
point in respect to this syzygetic cubic of its tangent at 3 are

X(Y—73):Y(Z°—X?) : (X2 —Y?);
and calling the point in question 2', then L=0 is the equation of a line through the

points 2', 2. The equation ®=0 is that of a conic, viz. the first or conic polar of 5
with respect to a certain syzygetic cubic

—2(aYZ+BLX +yXY)(2*+5°+2°) + («X2+BY* + o Z*)ayz=0,
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depending on the points 3, (2, or, what is the same thing, the conic ®=0 is a properly
selected conic passing through the points of intersection of the first or conic polars of
2 with respect to any two syzygetic cubics; and lastly, K is a constant coefficient.
The equation expresses that the points of intersection of

(W=0, P=0), (W=0, ®=0), (L=0, P=0), (L=0, ©=0),
lie in the syzygetic cubic T=0.
The left-hand side of the equation may be written

—XYZ{a( X4 20YZ) 4 B(Y*+21ZX) 4 y(2* +2IXY ) } (2° +° +2°+ 6 lwyz)

Fayz{ (X4 20YZ)+B(Y?+2IZX)+ (22 4+ 2IXY ) (X4 Y3+ Z°+-6IXYZ) ;
and it may be remarked also that we have

—3XYZ{a(X242IYZ)+PB(Y2+21ZX )+ y(Z*4-2IXY )}
equal identically to ‘
(X(Y*—Z5)(yY — BZ) + X (2 XY ol —yX) + Z(X* — Y*)(BX Y}
—(eYZ4BZX 4y XY (X4 Y° 4 Z° 4 6IXYZ).
Hence if we assume ' '
X4 Y472+ 61XYZ=0,
the equation will take the form
KU=WL+P0,

where the constant coefficient K may be expressed under the two different forms

K=—XYZ{a(X?+42IYZ)+B(Y*+20ZX)+ (2?4 2IXY)}

=HX(V’=Z)yY —PBZL)+ Y (L —X*) el —yX)+ L(X°*—Y*)(BX —aY)}

and W, L, P, ® have the same values as before. In the present case the point 2 is a
point of the cubic: the equation W=0 represents the first or conic polar of the point
in question, and the equation P=0 its second or line polar, which is also the tangent of
the cubic. The line L=0 is a line joining the point  with the satellite point of the
tangent at 3, or dropping altogether the consideration of the point (2, is an arbitrary
line through the satellite point: the first or conic polar of 3 meets the cubic twice in
the point 3, and therefore also meets it in four other points; the conic ®=0 is a conic
passing through these four points, and completely determined when the particular posi-
tion of the line through the satellite point is given. And, as before remarked, @=0 is
a conic passing through the points of intersection of the first or conic polars of 3 with
respect to any two syzygetic cubics. 'We have thus the theorem,—

The first or conic polar of a point of the cubic touches the cubic at this point, and
besides meets it in four other points; the four points in question are the points in
which the first or conic polar of the given point in respect of the cubic is intersected by
the first or conic polar of the same point in respect to any syzygetic cubic whatever,

88. The analytical result may be thus stated: putting . ‘

2r=aYZ+PLX+yXY, a=aX?+BY 477,
3um2
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or, if we please, considering #, A as arbitrary parameters, then the four points lie in the

conic

(22X, 22Y, 227, —AX, —0Y, —AZY, y, z)’=0,
or, what is the same thing, they are the points of intersection of the two conics
Xa*4+Yy* +722* =0,
Xyz+Yzw+Zay=0.

39. Considering the four points as the angles of a quadrangle, it may be shown that
the three centres of the quadrangle lie on the cubic. To effect this, assume that the

conic
(22X, 22Y, 227, —2 X, —1Y, —AZYx, y, z)*=0

represents a pair of lines; these lines will intersect in a point, which is one of the three
centres in question. And taking a, y, z as the coordinates of this point, we have
iyt iyzan i y=42"YL—NX?
147X —0Y?
142 XY — 727
(NYZ A 220X
:NZX 4 220Y?
XY 220725
and we may, if we please, use these equations to find the relation between #, A. Thus
in the identical equation #*.y*—(zy)*=0, substituting for #% ay, »* their values, and
throwing out the factor Z, we find (44*—a*)XYZ—z3*(X*+Y*+4-7°)=0, and thence, in
virtue of the equation X*+4Y*+47Z°+4-6/XYZ=0, we obtain
42° +61xn>—23=0.
But the preceding system gives conversely,
X2:Y?: 27:YZ: 2X : XY =4x’yz— 02"
 dntee —Ny?
: A’ ay — N2 ‘
I Nyz+-2xnz®
P N2+ 220y?
Iy 2027
Hence from the identical relation X2.Y2—(XY)2=‘O, substituting for X2, XY, Y? their
values, and throwing out the factor z, we find (42°—A®)ayz—#r*(2°+9*+42°)=0, and
thence, in virtue of the equation 4x*— A= —06/%A%, we obtain

P+’ +2° 4 6layz=0,
which shows that the point in question lies on the cubic. 'We have thus the theorem,—
The fixst or conic polar of a point of the cubic touches the cubic at the point, and
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meets it besides in four points, which are the angles of a quadrangle the centres of which
lie on the cubic. In other words, the quadrangle is an inscribed quadrangle.

40. To find the equations of the axes of the quadrangle, that is of the lines through
two centres.

We have ‘ }
(4°YZ—NX?)w 4+ (XY 422022 )y + (M2 X 4 220Y?)2=0

(WXY 424027 )x 4+ (42" ZX — 1Y)y 4 (WY Z 4 222X?)z=0
(WZX 4220 Y?) 2+ (MY Z 4 220Xy + (402 XY —A2Z2%)z =0 ;
or arranging these equations in the proper form and eliminating #? xA, 2%, we find

YZz, 7Zy+Y%2, X(—Xo+Yy+7Zz) |=0;
ZXy, X247z, Y( Xae—Yy+Zz)
XYz, Ya+X%, 7Z( Xa+Yy—Zz2)
or multiplying out,
XYZ (2= Y2 4 (X — Ze)y - (V= X))
F 2%yl Y? (—=2X°4- Y - 72°) 22’ Y 222X =Y —77)
+ 92X (= 2Y° 4 22+ XO) a2 X3 (2Y* — 77 — X®)
+ 20 YX(— 22+ X4 Y?) 4 922X V(27 — X2 — Y?)=0.
We may simplify this result by means of the equation X°*4Y*+Z*+6IXYZ =0, so as
to make the left-hand side divide out by XYZ: we thus obtain
(=YW (KO — 2y (V= X)2°
+(—3X*Y —6IY*Z)2%y +( —3Y*Z—612*X )’z +(—87°X —61X°Y )2’z
+( 3XY4-6IX*Z)xy*+( 3YZH-6IY X)yz>+( 3ZX>+61Z2°Y )ea*=0;
orin a diﬁ'erent form,
(1P =) Ko+ (=) (@ — )
+(—32%y —612°x) XY +(—3y*2— 61a*y ) Y°Z 4 (— 3222 —61y*2) 22X
+( Bay+4-6ly2") XY -( 3y +602°)YZP 4-( 3ea®+6lxy*)ZX*=0,
as the equation of the three axes of the quadrangle.

Article No. 41.—Recapitulation of geometrical definitions of the Pippian.

In conclusion, I will recapitulate the different modes of generation or geometrical
definitions of the Pippian, obtained in the course of the present memoir. The curve in
question is—

1. The envelope of the line joining a pair of conjugate poles of the cubic (see
Nos. 2 and 13).

2. The envelope of each line of the pair forming the first or conic polar with respect
to the cubic of a conjugate pole of the cubic (see Nos. 2 and 14).
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3. The envelope of a line which is the polar of a conjugate pole of the cubic, with
respect to the conic which is the first or conic polar of the other conjugate pole in respect
to any syzygetic cubic (see Nos. 2 and 9).

4. The locus of the harmonic with respect to a pair of conjugate poles of the cubic of
the third point of intersection with the Hessian of the line joining the two conjugate
poles (see Nos. 2 and 17).

5. The envelope of a line such that its lineo-polar envelope with respect to the cubic
breaks up into a pair of lines (see No. 24).

6. The envelope of a line which meets three conics, the first or conic polars of any
three points in respect to the cubic, in six points in involution (see No. 22).

7. The envelope of the second or line polar with respect to the cubic, of a point the
locus of which is a certain curve of the sixth order in quadratic syzygy with the cubic
and Hessian, viz. the curve —S.U?4-(HU)*=0 (see No. 27).

8. The envelope of a line having for its satellite point a point of the Hessian (see
No. 35). ,

9. The envelope of the polar of the satellite point with respect to the Hessian of the
tangent at a point of the Hessian, with respect to the first or conic polar of the point of
the Hessian in respect to the cubic (see No. 36).



